博客
关于我
目标检测
阅读量:738 次
发布时间:2019-03-21

本文共 4012 字,大约阅读时间需要 13 分钟。

I. INTRODUCTION

Alexnet CNN architecture has become a cornerstone in modern computer vision tasks. Its success relies on several critical innovations, including data augmentation techniques and the ability to generalize from limited training data. This paper explores these aspects in depth, focusing on practical improvements for real-world applications.

II. ARCHITECTURES OF ALEXNET CNN

The Alexnet network comprises several key components: the convolutional layers, pooling operations, features extraction, and classification modules. The network's depth and regularization techniques ensure robust performance across various datasets. This section delves into the design choices that make Alexnet a reliable framework for image processing tasks.

III. PROPOSED METHOD

3.A. Data Augmentation
Data augmentation is a critical step in training deep learning models, particularly when labeled datasets are limited. Common techniques include rotation, flipping, scaling, and translation. These methods help to generate diverse training examples, improving model generalization能力提.

4.B. Training Rotation-Invariant CNN

To address rotation sensitivity, we propose a novel approach that enhances the network's invariance to rotations. By incorporating rotation augmentation during the training phase, the model learns to recognize objects regardless of their orientation in the input images.

IV. OBJECT DETECTION WITH RICNN

A. Object Proposal Detection
Proposal generation is a fundamental step in modern object detection frameworks. It selects potential regions of interest from the input image, which are then evaluated for containing objects. This process is crucial for efficient detection.

B. RICNN-Based Object Detection

R-CNN builds upon Faster R-CNN by introducing a region proposal network (RPN) to generate proposals more efficiently. This approach balances speed and accuracy, making it suitable for real-time applications. The rcnn framework has become a standard in object detection, offering robust performance across diverse scenarios.

V. EXPERIMENTS

A. Data Set Description
The experiments utilize several benchmark datasets, including PASCAL VOC and COCO. These datasets provide a comprehensive evaluation framework for testing the proposed methods. The images contain various object classes and contexts, ensuring robustness of the detection models.

B. Evaluation Metrics

We employ standard metrics for object detection, such as accuracy, recall, precision, and F1-score. These metrics assess both the ability of the model to detect objects and its accuracy in localization. The evaluation process ensures fair comparison across different approaches.

C. Implementation Details and Parameter Optimization

The implementation leverages state-of-the-art tools and frameworks. We use Python with PyTorch for prototyping and TensorFlow for production-ready models. Parameter optimization is performed using techniques like grid search and Bayesian methods to maximize model performance.

D. SVMs Versus Softmax Classifier

This study compares support vector machines (SVMs) and softmax classifiers in the context of object detection. While SVMs excel at linear classification tasks, softmax functions are more suitable for deep learning models due to their ability to handle non-linear decision boundaries.

E. Experimental Results and Comparisons

The experimental results demonstrate the effectiveness of the proposed methods in various scenarios. We compare our approach with existing baselines and highlight improvements in accuracy and efficiency. The experiments also show that the proposed rotation-invariant CNN significantly outperforms traditional methods in rotation-sensitive tasks.

参考文献

[1] Krizhevsky A, Sutskever I, Hinton G E. ImageNet classification with deep convolutional neural networks[C]//Advances in Neural Information Processing Systems. 2012.
[2] He K, Zhang X, Ren S, et al. Deep residual learning //Proceedings of the IEEE conference on computer vision and pattern recognition. 2016.

转载地址:http://yiggz.baihongyu.com/

你可能感兴趣的文章
mysql中的rbs,SharePoint RBS:即使启用了RBS,内容数据库也在不断增长
查看>>
mysql中的undo log、redo log 、binlog大致概要
查看>>
Mysql中的using
查看>>
MySQL中的关键字深入比较:UNION vs UNION ALL
查看>>
mysql中的四大运算符种类汇总20多项,用了三天三夜来整理的,还不赶快收藏
查看>>
mysql中的字段如何选择合适的数据类型呢?
查看>>
MySQL中的字符集陷阱:为何避免使用UTF-8
查看>>
mysql中的数据导入与导出
查看>>
MySQL中的时间函数
查看>>
mysql中的约束
查看>>
MySQL中的表是什么?
查看>>
mysql中穿件函数时候delimiter的用法
查看>>
Mysql中索引的分类、增删改查与存储引擎对应关系
查看>>
Mysql中索引的最左前缀原则图文剖析(全)
查看>>
MySql中给视图添加注释怎么添加_默认不支持_可以这样取巧---MySql工作笔记002
查看>>
Mysql中获取所有表名以及表名带时间字符串使用BetweenAnd筛选区间范围
查看>>
Mysql中视图的使用以及常见运算符的使用示例和优先级
查看>>
Mysql中触发器的使用示例
查看>>
Mysql中设置只允许指定ip能连接访问(可视化工具的方式)
查看>>
mysql中还有窗口函数?这是什么东西?
查看>>